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Rotation of Magnetization in Unison and 
Langevin Equations for a Large Spin 

l vo  Kl ik  1 

Received March 1, 1991 

A single-domain ferromagnetic particle is represented as a large spin (model of 
rotation in unison) whose stochastic dynamics is derived from a spin-boson 
Hamiltonian. It is shown in the Markovian limit that thermal equilibrium exists 
provided that the fluctuation-dissipation theorem is supplemented by a sym- 
metry constraint which for bilinear anisotropic and nonlinear (magnetoelastic) 
spin-bath coupling can only be satisfied in the underdamped limit. Only for 
bilinear isotropic coupling (Gilbert's theory) is it satisfied identically for 
arbitrary damping strength. Uniaxial and cubic symmetries are considered. For 
a model uniaxial crystal the thermal decay rate of M and the thermal enhance- 
ment of the macroscopic quantum tunneling rate are calculated for Gilbert and 
rnagnetoelastic dissipative couplings and compared. The effects of memory are 
discussed. 

KEY WORDS: Micromagnets; rotation in unison; stochastic dynamics of a 
large spin; approach to equilibrium; classical and quantum decay rate of 
magnetization. 

The dynamics of the vector of total magnetization M(t) of a fine single- 
domain ferromagnetic particle (superparamagnet) is commonly described 
within the model of rotation in unison. This model assumes that exchange 
interaction is strong enough to maintain all spins within the particle in 
parallel at all times and the particle is then represented as a large spin 
S = ~,olM, where 7o is the gyromagnetie ratio. Surface effects and nuclea- 
tion of domain walls on impurities/1) are neglected. 

The purpose of this article is to study the stochastic dynamics of a large 
spin S with respect to the spatial symmetry of the dissipative coupling; 
the focus is on the existence of thermal equilibrium. For this reason the 
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Langevin equations for S, obtained from a spin-boson Hamiltonian, are 
treated in the Markovian limit only, where all proofs may rigorously be 
carried out. One may tentatively assume that the qualitative results of this 
paper hold at least for near-Markovian systems. A detailed study of non- 
Markovian systems, for which the Markovian limit does or does not exist, 
is complex and is deferred to a future publication. First Gilbert's equation 
for M = 70S is rederived from an isotropic spin-bath coupling bilinear in 
both the spin and bath coordinates. Next spin-bath coupling is considered 
which is bilinear but anisotropic or linear in the bath coordinates only, as 
corresponds to the magnetoelastic, or dipolar, interaction. It is shown in 
the Markovian limit that under these circumstances it is in general 
impossible to write down a Langevin equation describing the evolution of 
the system toward thermal equilibrium; this observation is the main result 
of the present article. The time evolution, however, is satisfactory for 
arbitrary symmetry of the dissipative coupling in the underdamped limit, 
i.e., in the first order of a small dissipation parameter tl, and in this limit 
for a simple model Hamiltonian the thermal decay rate and the macro- 
scopic quantum tunneling (MQT) rate of magnetization are calculated for 
both a linear and quadratic spin-bath coupling. The thermal decay rate dif- 
fers for the two cases only in the prefactor and is unlikely to produce any 
measurable effects. The MQT rate, however, is enhanced at very low tem- 
peratures by an exponential factor which is measurable and its dependence 
on the crystal parameters is calculated and discussed. All calculations are 
carried out in the phase space (~b, P) introduced by the parametrization 

M=?oS=7o[(Pz-P2) l /2cosq~, (P~-P2)a/as in(b ,P]  (1) 

and the saturation magnetization is M s = [M(t)[ = ?oP0 = const. In spheri- 
cal coordinates P = P0 cos 0. It is assumed that the magnetic energy H of 
the particle is known and given in terms of the direction cosines c~i, so that 
H(ei) may be written (2'3) either as H(Si) or as the Hamiltonian H(~b, P). 

The spin-boson phenomenological Hamiltonian Hto t is constructed in 
such a way as to be invariant under both time and space inversion(4); the 
derivation of a stochastic equation from this model follows ref. 5. Gilbert's 
equation of motion (6) is obtained if we interpret the boson heat bath as an 
electromagnetic field given by the Hamiltonian 

1 
Hi  = ~ ~ (p~ + co~q~) (2) 

where k is the wave vector, k =  ]k], and qk and Pk are the position and 
momentum coordinates of the field normal modes. The spin couples to 
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individual modes B k of the magnetic field (7) and the interaction 
Hamiltonian is the bilinear form 

Hint= E Cknk 'S= E ( S x k ) "  (ak~kqk+bkPk) 
k k 

(3) 

The coupling constants ak, bk are independent of each other. They are 
chosen to be scalars, which corresponds to isotropic dissipative coupling. 
The spin-boson Hamiltonian must yet be supplemented (4) by the counter- 
term Hc = 1/2 Zk (S x k) 2 (a~ + b~), which ensures that the bath oscillates 
around its current equilibrium position given by H f  + Hi,t. From the full 
Hamiltonian Hto t = H +  H f  + H~,t + H~ we obtain for the bath coordinates 

';o qk(t) = - -  dt' sin o)k(t - t ' ) [bkg( t ' )  -- a~cokS(t')] x k + q(k~ 
(D k 

pk(t) = - dt' sin ~ok(t - t ')[akf~(t'  ) + bkcokS(t')] x k + p~~ 

(4) 

where q(k~ and p(k~ are the proper oscillations of the bath. 
In order to find the effective magnetic field Bert acting on the spin S, 

we take the derivative 8Htot/8S and substitute in here from Eq. (4). 
We shall further assume that at the time t = 0  the heat bath was in 
thermal equilibrium, (5) so that (q~,k(O) qs, w(O))=Ook2Tf~, j6k,  k, and 
(Pi, k(0) pj, k , ( 0 ) )=  TSi, SSk,k,, where T is the bath temperature. Then, on 
taking the averages, 

- B ~ =  ( ( H t o t ) s > = H s  + d t ' 7 ( t - t ' ) g ( t ' ) + ~ ( t )  (5) 

with H s = 8H/8S.  The two-time correlation function of the noise field ~ is 
given in terms of the memory kernel 7 ( t - t ' )  as 

( b i ( t ) b j ( t ' ) ) = T T ( t - t ' ) 6 ~ , j  with ( ~ ( t ) )  = 0 (6) 

and the Laplace transform of the memory kernel 7(t) is 

~(z) 2 ~ 2 2 z = ( a ~ + b k ) ~ k  2 
k Z +09/s 

where i = 1 or 2 or 3. Isotropy of space has been made use of in deriving 
~7 and all odd powers of ki in the sum were omitted. In the memoryless case 
7(t) = 2r/6(t) and bi ~ bi = (2r/T) 1/2 wi(t), where wi(t)  are three independent 
Wiener processes. Gilbert's equation for the magnetization M(t) is 
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obtained if the Markovian equation of motion ~ = S x Br is multiplied by 
the gyromagnetic ratio 7o. One has S" S=  Po 2 for any Be~. Equations (5) 
and (6) hold for arbitrary choice of {ak, bk}. Thus, Gilbert's equation 
follows from an isotropic spin-bath coupling bilinear in the spin and bath 
coordinates; any other information is contained in the kernel ~. 

For the intended discussion of the (Stratonovich) Fokker-Planck 
equation we require the Langevin equation in the (~b, P) phase space; only 
the memoryless case is considered here. Proceeding as before, we obtain 

q~= <(Htot)e> = H p + S p .  [ q g + b ]  

= - -  < ( H t o t ) , k  > ----- - H ~  - S~. [r/g + b] 
(7) 

with Hp = OH/OP, etc. The vector S is a function of (~b, P) and these equa- 
tions constitute a linear system for the pair (q~,/5). The corresponding 
Fokker-Planck equation in the (ql, 0) parametrization was given first by 
Brown (6) and in the (ql, p) parametrization (P=PoP) by Klik and 
Gunther. (2) Here it will be only observed that the discriminant of the 
system (7) is A = 1-k-r]ZPo2; this factor represents an overall time scaling 
parameter. 

Looking back at the construction of the Hamiltonian Htot, we see that 
it is of an oddly hybrid form: On one hand, S is treated as a bona fide spin 
interacting with magnetic field, yet we also treat it as a vector representing 
the particle magnetization and we allow it to interact "with itself," i.e., with 
the effective crystal field of magnetic anisotropy given by the Hamiltonian 
H(S~). This suggests that within the model of rotation in unison we con- 
sider next to the B .S  spin-bath coupling also interactions of the 
magnetoelastic type H i n  t ,-~ ao-klblijSkS l-[- " "  ", where u is the elastic displace- 
ment. (8'9) Let first S(t)= So + 6S(t) and let the deviation 6S(t) from the 
initial state So be so small that Hint can be linearized in (iS. Then for 
isotropic a~kz the theory of Gilbert follows. What happens to the 
anisotropic linearized theory shall be explained presently. 

The point symmetry of the magnetic energy H, of the bath (elastic 
oscillations) Hf, and of the magnetoelastic coupling Hin t is given by the 
crystal symmetry of the particle. In order to avoid complicated expressions, 
we shall assume that a canonical transformation diagonalizing the field 
Hamiltonian HI has already been performed so that it has the form (2). Let 
a model coupling Hamiltonian be written as 

Hi,t = ~ ckqk" f[S~(~b, P)] (8) 
k 

where the functions fi are polynomials in the three spin components Si. 
Again we choose the special case of scalar coupling constants ck to arrive 
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at a scalar rather than a tensorial dissipation constant. If f i  are 
homogeneous, quadratic in S~, then this ansatz corresponds, e.g., to the 
leading order of magnetoelastic coupling in cubic crystalsJ s/ The 
memoryless stochastic equations generalizing the system (7) are 

= ( ( H t o t ) e )  = He + fp" [r/i'+ b]  

P = - - ( ( H t o t ) , ~  ) = - H ,  - f~" [r/i'+ b] 
(9) 

and the equivalent effective magnetic field generalizing (5) is given by 

- (Bert), = ((Htot)si) = Hsi + fs," (tit + b) (lo) 

Memory is included in a straightforward manner since the relation (6) 
holds. Its effects are briefly addressed in the discussion of the MQT rate of 
magnetization. 

The discriminant of the linear system (9) may be written as 

A[-f] = 1 + r/2(fe • f~)2 (11) 

and it was already noted in conjunction with the system (7) that 
A IS] = 1 + t/2P~ is an overall scaling factor of time occurring both in the 
Langevin and the Fokker-Planck equations. The expression (11) is, 
however, in general not independent of (~b, P) and there exists then a local, 
(~b, P)-dependent time scale. It is not difficult, albeit laborious, to show that 
the stationary solution of the corresponding Fokker-Planck equation is 
n o t  e -H/T, but rather e ~//r+~ (k B = 1 throughout). Thus, in the case of 
several independent noise fields coupling to both momentum and position, 
the state of thermal equilibrium is a stationary solution of the Fokker- 
Planck equation only if the fluctuation-dissipation theorem (6) is 
supplemented by the condition that A[f]  be constant on the phase space 
(~, P): 

A~[f] =A.Ef 2 =0 VO, P<=> A[f ]  =0 Vt (12) 

This condition severely curtails the range of applicability of the model of 
rotation in unison. It is satisfied for the S" B isotropic coupling (3), but an 
extensive search failed to produce a satisfactory f quadratic in S i and by 
the same token it is not possible to generalize the bilinear Gilbert theory 
to anisotropic noise (tensoriat dissipation): the corresponding discriminant 
A fails to satisfy (12). The trivial case Air]  = 1 occurs if f l  = f2  = f3  or if 
all but one of the components f i  are zero, but these two cases do not 
correspond to any physical situation. The isotropic bilinear coupling of 
Gilbert thus occupies a truely unique position. 
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Despite these constraints, Eqs. (9) need not be rejected out of hand: 
the key observation is the fact that the general stationary state deviates 
from thermal equilibrium by a factor which is O(t12), corresponding to the 
r/2 deviation of the local time scale A from unity. This suggests that 
Langevin equations for (~b, P) be considered in the first order of t/only, i.e., 
in the underdamped limit where A[f]  = 1 gf. Two symmetries of the dis- 
sipative coupling are of particular interest: uniaxial and cubic. In order to 
avoid ~2'3) the singular points -+Po in the [0, 0, 1] direction [compare the 
parametrization (1)], the easy axis of the uniaxial crystal will be placed 
into the [1, 0, 0] direction (minima at P = 0, ~b = 0, re) and we shall assume 
that there are four equivalent saddles in the directions [0, 1, 0] and 
[0, 0, 1]. The trivial coupling along the easy axis, f =  IS 2, 0, 0], offers a 
chance to write down a Fokker~Planck equation valid for all q, but it can- 
not drive decay from one minimum along [1, 0, 0] to the other. Hence we 
choose f =  [0, S 2, $2].  For a cubic crystal with easy axes in the [1, 0, 0], 
[0, 1, 0], and [0, 0, 1] directions there is in the first approximation ~8} 

f , =  S~. The noiseless equations of motion in thefirst order of small rl have 
the form (x 1 = ~b, x 2 = P) 

s h i -  qAi.jHxj (13) 

where h =  [ H x 2 , - H x , ]  = [ H p , - H ~ ] ,  Ai, j=Aj,  i, and t/ has been scaled 
by a factor of 2: r/--* q/2. The full Langevin equations are too complicated 
to be given here in extenso; moreover, they are easily derived from Eqs. (9), 
and only the corresponding Fokker Planck equation is given here: 

~t = L W -  ~xi 

0 2 
+ t / T ~  [A~.j W] (14) 

for which Le-mr=O.  The functions Ai.j(~b, P) are given for uniaxial 
symmetry by 

A x . , = ( l + s i n 4 ~ b ) P  2, A2.z=cosZ (bsinZ q)(P2-p2) 2 
(15) 

A1,2 = Az. 1 = cos q~ sin 3 ~b P(P~ - p2) 

whereas for the cubic case one obtains 

Al, l = ( l + s i n 4 ~ b + c o s 4 ~ b ) P  2, A2,2=2cos2(bsin2(b(P2-P2)2 

A1.2 = A2,1 = cos ~b sin ~b (sin 2 ~b- cos 2 ~b) p ( p 2 _  p2) 
(16) 
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The isotropic Gilbert system assumes for small *7 the form (14) as well(2): 

A1 1 2 2 2 1, 2 , =Po(Po - P  ) A2,2 = P o - -  p2, A1,2=A 2,~=0 (17) 

Contrary to the previous two cases, the crystal orientation in space is here 
arbitrary, i.e., not specified by the chosen dissipative coupling. 
(fp x fo)2 ~ cos 2 q~ sin 2 ~ p~(p2_ p2)2 for both the uniaxial and cubic crys- 
tals, so that it vanishes with its first derivatives in the planes (1, 0, 0), 
(0, 1, 0), and (0, 0, 1). Its second derivatives are, however, nonvanishing 
and the linearized full Fokker Planck equation about P = 0 does not have 
the stationary solution e -H/T. 

From Eq. (14) it is easy to find for small r/ the mean first passage 
time r out of the domain of attraction of a metastable minimum. The 
Dynkin equation L ' r = - 1  is to be solved in the underdamped limit 
with the boundary condition {m) z[e~ = 0 at the saddle point energy El. It 
is then an easy excercise (2'1~ to show that, neglecting backscattering, the 
corresponding decay rate through one saddle for T ~  Q is 

c~ e Q/T with dE=rl~ E (-1)J+~ dxjAijHx, (18) 
~ : 2 - T T  ~ " 

Here eo 0 is the well frequency, C02= L/(~ /4(~ ( H ~ ) ) 2 , . ~ e e . .  # Q is the barrier 
height, and dE is the energy loss per cycle at the energy Ej in the first 
order of r/. This result, with suitably calculated dE, holds for non- 
Markovian processes as well {m} 

For realistic systems the integral in (18) can only be evaluated numeri- 
cally. (3) A simple uniaxial Hamiltonian for which AE can be calculated 
analytically is 

t 2 t 2 K 2 ( p 2  __ p 2 )  sin q~ H=KBc% + K 2 % = K 3  Pc+ (19) 

Here K'i= p2Ki= M2702Ki and 0 < K 2 < K 3. The easy axis lies along the 
[1, 0, 0] direction, with the minima E o = 0  at (0,0) and (n, 0), and there 
are but two equivalent saddles, E1 =Kz P2, in the [0, 1, 0] direction, at 
(___7r/2, 0). This model affords a good approximation of the vicinity of a 
single saddle point, but in the underdamped limit the dynamics in a larger 
part of the phase space, along the contour of El,  contributes to the prefac- 
tot and results derived from (19) must be regarded as qualitative only, 
since all real uniaxial systems have at least quartic symmetry in the basis 
plane. One has 0) 2 = 4KzK3P ~ and 

~8rlp3K3 [a(l  - a)] 1/2 for f = S 
AE= [8r/PoS(K2 +K2)  K3 , [ a (  l - a ) ]  m for f =  [0, S 2, S 23 (20) 
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In either case a = K 2 K 3 1 <  1; also note that for the Gilbert-type coupling 
(17), r/~ Po  1, whereas for (15), tt ~ Po  3. Numerical calculations show that 
if an external magnetic field B in the [1, 0, 0] direction is present, AE 
decreases approximately linearly with B as the contour E1 contracts toward 
the metastable minimum. For a = 1 the Hamiltonian (19) is strictly axially 
symmetric, the saddles vanish, and the calculation leading to (18) becomes 
meaningless. It is interesting to observe that none of the currently available 
methods of decay rate calculation is applicable to this two-dimensional 
saddleless system embedded in three-dimensional space, a~ 

According to the formulas (20), it is, in principle, possible to dis- 
tinguish between the linear and nonlinear coupling in measurements of the 
thermal decay rate; the prefactor, however, can only be observed with dif- 
ficulty. For this reason we now turn our attention to macroscopic quantum 
tunneling of magnetization, (9'1L12~ where the symmetry of dissipative 
coupling influences also the more easily observable exponential factor. We 
wish to determine the dependence of thermal enhencement of the MQT 
decay rate on the anisotropy coefficients K i. A model calculation for weak 
dissipation will be carried out for the Hamiltonian (19) within the phase- 
space path integral formalism of Enz and Schilling. (12)'2 Here Wick rotation 
is achieved by the analytic continuation t ~ - i h f i ,  f l = T  -~, and by 
introducing the imaginary momentum @ = iP so that Hamilton's equations 
remain real and S2[~b, - i@] =P~.  The phase space (0, 2~)x ( - P o ,  P0)is 
mapped onto the strip (0 ,2 rc )xR 1 with the poles -+Po removed to 
infinity. The quasiclassical (Po >> h) tunneling rate is given by (4) 

~c = Ae - sE/h (21) 

where SE = SE [~bB, @B] is the Euclidean action of the bounce trajectory in 
the Wick rotated phase space and A is a prefactor. It is easy to show (4"12) 
that the interaction Hamiltonian (8) together with H F of (2) and the 
corresponding counterterm leads to 

where k ( r ) =  1/hflZn~(n)ei~n~, vn=2~n/hfl, ~(n)=tv~l r and 
f~e . For k( 'E)=?l(2~)-l"~ -2 the first variation 6SEE~b, r  = 0  

Z According to R. Schilling (personal communication), there is a misprint in Eqs. (15) of 
ref. 12: tanh -~ should be coth ~ in the first equation and [(1--a2)1/2--COS q] should read 
[ (1  --  a2) 1/2 + cos  q ]  in the s e c o n d  one.  
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yields upon inverse Wick rotation the system (9) in its noiseless form. The 
reader is referred to the work of Enz and Schilling (12) for a discussion of the 
difficult ordering problem in the phase-space path integral. 

A Euclidean action of form similar to (22) was studied previously (1~ 
in the parametrization (~b, 0). Note that while $3 = - iO is imaginary, the 
sum in (22) is positive definite. This follows from the fact that for every suf- 
ficiently large N the sequence {~(n)} has a lower bound ~ > 0  so that 
~ ' n  N= --N cr S , ' S  n > ( ~ 2  N= NSn ~  n >0,  since S ' S = p 2 > 0 .  In the 
limit of high temperature it is not difficult ~3) to derive from (22) the 
Grote-Hynes result for the classical decay rate at moderate dissipation 
strength: 

1 6O 0 
~c = - -  - -  vce - ~  (23) 

2re (Ol 

where 6o0 and 6ol are the well and saddle frequencies. The frequency vc of 
the unstable mode is given by the largest positive root "3) of the equation 

L--pp--V~(Ivcl)] 0 

H (I) are the partial derivatives at the saddle and it was assumed that Xl, x2 
~(1) _ 0, which is true for all crystal symmetries of interest apart from the 
case of a uniaxial crystal with rhombohedral anisotropy in the basis 
plane. (3~ This equation generalizes the memoryless result, (2"3~ where ~ = q, 
but a rigorous proof that the non-Markovian system (5) goes to thermal 
equilibrium is outstanding. 

The dissipationless decay rate (21), including the prefactor A, has been 
calculated by path integral methods at T- -0  for the Hamiltonian (19) by 
several authors. (9'12~ To find the thermal enhancement of the decay rate for 
small T and q, we first determine the dissipationless dynamics (14) in the 
Wick rotated phase space (~b, 0). For 

H =  -K3~P 2 + K2(P~ + ~p2) sin 2 ~ = K2P~(1 - e) 

where 1 >~e>0 and e=  1 at T = 0 ;  there follows for Si[~b(v), -@(~) ]  

$12(r) = 16p2(1 + q) 1 (hf l (D0) - 2  K2(k) k 2 sn2(03z ]k) 

S2(z)  = 16p2(hf16oo)-2 K2(k)  dn2(cbr I k) 

$2(~) = - 16qPg(1 + q) -*  (hfl6oo) 2 K2(k) k 2 cn2(05v i k) 

(24) 

Here k2=e(1 +q)(1 +qe) 1 for the modulus and q = K 2 ( K 3 - K 2 )  -1 >0.  
The K(k)  is an elliptic integral of the first and sn(ulk), etc., are Jacobi 

822/66/1-2-41 
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elliptic functions (ref. 15, w The oscillation energy K2Pg(1-g)  is 
linked to temperature by the periodicity condition (16) 

hflgo=4K(k), where &=~0(1 +q~)1/2 

The physical picture corresponding to Eqs. (24) is the following: The 
saddle point at (~b, P ) =  (n/2, 0) is mapped onto a local maximum at 
(0, ~)= (n/2, 0) and the absolute maximum at the pole P=Po has been 
removed to infinity, where H ~  _ ~ 2  The minima at (~b, P ) =  (0, 0) and 
(n, 0) become saddles at these points. Equations (24) describe periodic 
clockwise motion with period hfl around the maximum at (hi2, 0) at the 
energy H=K2p2(1-e)>O. With the phase chosen here one has 
(~b(0), 0 (0 ) )=  (n/2, ~m~x), where =qePg. In order to calculate SE 
within the first order of small r/, it is sufficient to substitute the Fourier 
components of the nondissipative solution (24) into the sum (22). The 
Fourier transform of cnZ(ulk) is known ~ and for Ohmic damping one 
has(4,13, x4~ cffn)= r/[v,t. Using the Euler-McLaurin summation formula, we 
obtain for the dissipative contribution to the Euclidean action for 
f(z) = [0, S2(z), S~(z)] the expression 

In[ f , ' f  ~ ( 3 ) - - 0 2 -  7r 04+ ... (25) TCt] 
.= co - n 2 0  

where if(z) is the Riemann zeta function (ref. 15, w and ~ = 2rtT/heoo for 
brevity. Unfortunately, this procedure fails for the Gilbert coupling 
f ( r )=S(z) .  The reason is that $1,,,$1, ,,~n sinh-2(rcn0), n odd, and the 
Euler-McLaurin formula becomes inapplicable for small n. The sum is an 
even function of 0 and examination of the formulas (24) suggests that 

~ c  c2K2 + c3K3 
rc~/ y. Inl S n ' S - n ~ r / P  2 (26) 

, ,  = - m  K 3  

where c i are numerical factors independent of Ki and T. 
The polynomial decrease in Euclidean action with temperature for 

small damping leads to an exponential increase in the MQT rate ~:. The 
preceding formulas give the dependence of the exponential thermal enhan- 
cement of ~c on the anisotropy coefficients for the simple Hamiltonian (19), 
which is a rather poor representation of a realistic system, so that these 

0 1 results are qualitative only. Nonetheless, if for small t/, S~ ~ S E + t/S E, then 
for f i~S i  the thermal enhancement S~--S~[KJKj, 02], whereas in the 
nonlinear coupling f ,  ~ S 2 one has SE[(KJKj) 2, 32 ] also for more realistic 
crystal symmetries. These results are independent of the specific choice of 
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the coefficients e(n). G a r g  and  K i m  (H) analyze  magne toe las t i c  diss ipat ive 
coupl ing  in s u p e r p a r a m a g n e t s  and  conclude  tha t  the dynamics  of M is 
unde rdamped ,  so tha t  the above  analysis  applies,  and  that  e ( n ) =  r/Iv3n], for 
which the M a r k o v i a n  l imit  does  no t  exist. I t  is at the m o m e n t  a l toge ther  
unclear  whether  for this choice of  m e m o r y  the rmal  equi l ibr ium exists even 
in the u n d e r d a m p e d  limit. F u r t h e r  s tudy of the n o n - M a r k o v i a n  equa t ions  
of m o t i o n  is clearly required,  bo th  in the case where the M a r k o v i a n  l imit  
exists and  where it does  not,  as in the above  case. 
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